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The silent pandemic of bacterial antimicrobial resistance is a leading cause of death worldwide, prolonging hospital 
stays and raising health-care costs. Poor incentives to develop novel pharmacological compounds and the misuse of 
antibiotics contribute to the bacterial antimicrobial resistance crisis. Therapeutic drug monitoring (TDM) based on 
blood analysis can help alleviate the emergence of bacterial antimicrobial resistance and effectively decreases the risk 
of toxic drug concentrations in patients’ blood. Antibiotic tissue penetration can vary in patients who are critically or 
chronically ill and can potentially lead to treatment failure. Antibiotics such as β-lactams and glycopeptides are 
detectable in non-invasively collectable biofluids, such as sweat and exhaled breath. The emergence of wearable 
sensors enables easy access to these non-invasive biofluids, and thus a laboratory-independent analysis of various 
disease-associated biomarkers and drugs. In this Personal View, we introduce a three-level model for TDM of 
antibiotics to describe concentrations at the site of infection (SOI) by use of wearable sensors. Our model links 
blood-based drug measurement with the analysis of drug concentrations in non-invasively collectable biofluids 
stemming from the SOI to characterise drug concentrations at the SOI. Finally, we outline the necessary clinical and 
technical steps for the development of wearable sensing platforms for SOI applications.

Introduction
Every year, about 5 million people die from causes related 
to the silent pandemic of bacterial antimicrobial resistance, 
making it a leading cause of death worldwide.1 Bacterial 
antimicrobial resistance can result in prolonged hospital 
stays and substantially increased health-care costs.2 The 
bacterial antimicrobial resistance crisis is exacerbated by 
the few efforts currently underway to develop new 
antimicrobial drugs3 and by the inappropriate use of 
existing antibiotics, which serves to promote the further 
development of bacterial antimicrobial resistance.4 Blood-
based therapeutic drug monitoring (TDM) has the 
potential to optimise concentrations of antimicrobials (by 
tailoring dose regimens for each patient) and reduce the 
emergence of bacterial antimicrobial resistance, but is 
invasive and laborious.5,6 Furthermore, the tissue 
penetration of antimicrobial drugs might vary, especially 
in patients who are critically or chronically ill, leading to 
treatment failure.7,8

We propose a three-level model that expands current 
TDM for antibiotics beyond blood analysis to 
include examination of antibiotic concentrations in 
non-invasive biofluids stemming from the site of 
infection (SOI). The three levels of the model are 
defined as: (1) upstream of the SOI (in the blood), (2) at 
the SOI (eg, epithelial lining fluid in cases of 
pneumonia), and (3) downstream of the SOI (eg, in the 
breath in cases of pneumonia). The advancements 
in wearable sensing technology offer a promising 
opportunity to accurately measure drug concentrations 
in various matrices in a simple, convenient, and 
low-cost manner. Wearables have the potential to realise 
this three-level model into a laboratory-independent 
and continuous TDM approach with a broad clinical 
applicability. To our knowledge, our model is the first to 

provide a complete and continuous picture of antibiotic 
tissue penetration.

Therapeutic antimicrobial monitoring
Timely application of appropriate and correctly dosed 
antimicrobials is essential for the effective treatment of 
sepsis and septic shock.9 Traditionally, TDM was adopted 
for antibiotics with narrow therapeutic indices, such as 
aminoglycosides and vancomycin. Depending on the 
antibiotic, TDM has been shown to be cost effective, to 
reduce the incidence of infection, and to decrease exposure 
to toxic concentrations of aminoglycosides in the blood.10,11 
Due to increasing evidence linking subtherapeutic 
antibiotic concentrations with treatment failure, TDM is 
being used to identify underdosing and facilitate dose 
optimisation, with the aim of maximising the likelihood 
of antibiotic effectiveness.12,13 TDM mainly analyses drug 
concentrations in patients’ blood, but many infections 
occur outside of the bloodstream itself. Defining the 
optimal therapeutic range for antibiotics by specifying a 
lower concentration boundary to guarantee effectiveness 
and an upper boundary to prevent toxicity and adverse 
events is a necessary prerequisite to TDM.14 Assessing 
inter personal and intrapersonal pharmaco kinetic and 
pharmacodynamic changes in relation to the in-vitro 
assessed minimal inhibitory concentration (MIC) of 
the pathogen are further key elements of TDM.15 
Pharmacokinetic and pharmacodynamic indices depend 
on the antibiotic applied; that is, whether it is a time-
dependent agent (eg, β-lactam antibiotics), a concentration-
dependent agent (eg, aminoglycosides), or both a 
time-dependent and concentration-dependent killing 
agent (eg, fluroquino lones).16 Nevertheless, the antibiotic 
concentrations in plasma do not accurately reflect the 
concentrations in infected tissue (such as abscess fluid or 
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epithelial lining fluid).17 Additionally, antibiotic con-
centrations might not be appropriate in patients with 
altered pharmaco kinetics and pharmaco dynamics (eg, 
patients who are critically ill) and in patients with 
diminished tissue penetration (eg, in peripheral artery 
disease), which can result in treatment failure.8,18,19 Other 
key challenges to wider implementation of TDM include 
the needs for broad and continuous availability, easy 
operability, short turnaround times, and cost effectiveness, 
in combination with easy-to-interpret results.20

Personalising antimicrobial drug dosing
TDM provides a feedback loop to ensure that antibiotic 
exposure remains therapeutic throughout the course of 
therapy. However, ensuring that prescribed doses are 
appropriate—whether they be for empirical or targeted 
therapy—requires further consideration of dose opti-
misation strategies (figure 1), particularly for population 
groups that are difficult to treat. Additionally, the 
reduced pathogen susceptibility commonly observed 
among patients in intensive care units (ICUs) presents 
added challenges to achieving pharmacokinetic and 
pharmacodynamic exposure targets.22 Dose optimisation 
techniques, such as the use of continuous infusions for 
β-lactam antibiotics, have shown promise for improving 
patient outcomes and might be useful in treating 
infections caused by pathogens with reduced 
susceptibility.23 Data from large clinical trials quantifying 
these potential clinical benefits are still forthcoming.24

Advances in dose optimisation strategies, such as the 
development of software applications that include 
model-informed precision dosing (MIPD), are important 
in expediting the dosing adjustments required to 
personalise antibiotic dosing.25 Published models of 
antibiotic pharmacokinetics in specific population 
groups can now be integrated with relevant patient-
specific information, such as kidney function and 
bodyweight, and with specific data for bacterial pathogens 
(eg, minimum inhibitory concentration) and TDM 
sample results (if using Bayesian forecasting) to generate 
tailored dosing regimens. Preliminary findings suggest 
that this personalised approach to antibiotic dosing 
results in improved attainment of pharmacokinetic and 
pharmacodynamic targets among patients who are at 
high mortality risk from infections.26 In one study, 
approximately one in five patients received substandard 
antibiotic dosing regimens, which suggests that a more 
nuanced approach to dosing that considers patient, drug, 
and pathogen data might be required.26

An important consideration when looking to 
incorporate MIPD software into non-invasive antibiotic 
TDM is that existing pharmacokinetic models for 
antibiotic populations have been developed via intensive 
sampling from the central compartment. To apply these 
models to non-invasive samples, ideally from the SOI, 
further work describing differences in drug behaviour 
in the central and peripheral compartments will be 
required. Furthermore, as TDM information becomes 
available and is accumulated by use of innovative 
antibiotic surveillance tools, large volumes of data 
could further inform and continuously fine-tune 
existing pharmacokinetic models for populations such 
as criti cally ill patients. By harnessing artificial 
intelligence and machine-learning capabilities, person-
alised antibiotic dosing could become smarter, leading 
to improvements in initial empirical dosing and in the 
dose adjust ments necessary due to intrapatient 
variability during treatment.

Figure 1: What is therapeutic antibiotic management?
The way we interpret the M in TDM has practical consequences for therapy: are we seeking monitoring or 
management?21 Considering the variations in antimicrobial exposures across different patients, personalised 
antimicrobial dosing should be targeted to maximise therapeutic effectiveness. The dosage regimen should be 
tailored during treatment according to the requirements of each individual via a feedback control loop. The success 
of this loop depends on two factors: how representative the pharmacokinetic and pharmacodynamic studies are of 
drugs for the TDM, and the ability of current measurement techniques to access free drug concentrations. Ideally, 
initial pharmacokinetic and pharmacodynamic models should be built on the basis of large-scale studies, as the 
quality of the database determines the success of the dosage adjustment. In other words, the data used to 
construct the initial model should explicitly reflect pharmacokinetic variability according to the patient’s 
physiological and pathological history, dietary habits, possible drug–drug interactions, and genetic factors. 
However, the underlying pharmacokinetic and pharmacodynamic model parameters in TDM software represent 
the average behaviour of the participants in the clinical study, and hence serve as an educated guess at best. 
Therefore, antimicrobial treatment should be conducted as a loop, with software parameters updated on the basis 
of a patient’s clinical response. Such a loop starts with the selection of the set point (initial dose) based on the 
clinical study embedded in the software. Instantaneous free drug concentration (CA*) is measured via an analytical 
tool (preferably one providing continuous measurement, such as a biosensor). The initial dose is selected on the 
basis of the clinical study (CAset) and the measured value (CA*) is used as feedback to update the pharmacokinetic 
model to correct the relationship between the dosage regimen and the free drug concentration. Simultaneously, 
the efficacy of the free drug concentration for the patient is continuously re-evaluated on the basis of 
multidimensional information collected through patient observation (eg, clinician judgement or laboratory 
results). Having multidimensional data is particularly important in the case of combined therapies—for example, 
when expert clinical judgement is required to decide the efficacy of a drug’s concentration for the patient (CA*) 
rather than adhering to the initial dose selected on the basis of the clinical study or pharmacodynamic algorithms 
only (CAset). The pharmacokinetic and pharmacodynamic model is iteratively personalised by updating the 
software parameters of the model to attain the most recent set point (CA*). If necessary, the TDM protocol is 
updated considering when, how, and with what frequency data will be collected. We believe TDM should evolve 
from passive drug concentration monitoring to the active management of free drug concentrations for the 
optimal benefit of each individual patient.21 Adapted from Ates et al.21 Figure created with BioRender.com. 
TDM=therapeutic drug monitoring.

The initial dose is selected on 
the basis of the clinical study 
(CA

set) embedded in the 
software

Instantaneous free drug 
concentration (CA*) is 
measured via analytical tools

Initial dose: CA
set

Sampling frequency

CA
set personalised

Difference: 
CA

set–CA*Personalised pharmacokinetic 
and pharmacodynamic model 
parameters

Multidimensional 
information from the 
patient (eg, laboratory 
results and possible 
drug–drug interactions)

The difference between the 
CA

set and CA* is used as 
feedback to update the 
pharmacokinetic model 

Efficacy of the free drug 
concentration (CA*) for the 
patient is re-evaluated

Software parameters of the 
model are updated to 
attain the most recent set 
point

TDM

TDM protocol is updated 
considering when, how, 
and at what frequency data 
will be collected



www.thelancet.com/infection   Published online June 19, 2023   https://doi.org/10.1016/S1473-3099(23)00215-3 3

Personal View

Wearable biosensors for personalised health 
monitoring
During the past six decades, biosensors have largely 
been used to replace conventional benchtop equipment 
as screening, monitoring, and diagnostic tools 
in centralised laboratories.27 Commercial handheld 
analysers, such as glucose and lactate meters for the 
self-monitoring of metabolites, are successful examples 
of such applications. Although commercially available 
biosensors can reduce health-care costs and hospital 
visits, the majority are invasive and involve blood 
sampling, which raises the risk of infection and can 
result in reduced patient compliance. Research is 
therefore focused on developing biosensors (preferably 
in a wearable format) for non-invasive and minimally 
invasive analysis.28

Wearables are highly versatile, and their use can easily 
be expanded to provide a holistic approach to monitoring 
patients’ health, beyond simply providing TDM. 
Metabolites, electrolytes, proteins, drugs, and hormones 
are detectable in non-invasively accessible biofluids, such 
as sweat,29,30 saliva,31 and tears,32 and in interstitial 
fluid (ISF),32,33 which is easily accessible with a minimum 
of invasiveness. These fluids could be used by wearable 
sensors as an alternative to blood.34

Sweat and sweat sensors
Sweat contains physiologically and metabolically rich 
analytical information that can be readily accessed and 
non-invasively retrieved. Several sampling sites are 
available for use, given the high number of sweat glands 
on the body (with densities of more than 100 glands 
per cm² in some locations).35 A wide range of 
sweat-monitoring, wearable biosensor platforms have 
been developed, including temporary tattoos, patches, 
wristbands, and epidermal microfluidic devices.36–39 
Sweat is a dynamic biofluid; its pH can vary 
from 4·5 to 9·0, and its composition can vary depending 
on the skin’s body localisation and how it is generated 
(ie, by exercising, thermal or chemical stimulation, or 
passively). Small molecular analytes, such as glucose, 
alcohol, uric acid, tyrosine, and cortisol, can be directly 
measured in sweat and these concentrations can—to 
some extent—correlate with those in blood.30,37,40,41 Sweat 
has also been used for the detection of exogeneous 
molecules, including drugs.42 However, the relationship 
between drug concentration in the blood versus the 
concentration measured in sweat is not well understood, 
which complicates prediction of the correlation between 
sweat and blood.

Breath and breath sensors
After the discovery that some volatile organic components 
in exhaled breath are associated with certain metabolic 
activities, research efforts have been dedicated to the 
analysis of these volatile organic components using gas 
sensors (electronic noses, which are analogous to 

receptor cells in the nose).43 Breath analysis via electronic 
noses has so far been used for asthma management and 
treatment (both at home and in clinics) and in breath 
biopsies,44 and has been used to diagnose diabetes, viral 
infections,45 lung cancer,46 and other lung diseases.43 A 
more promising—yet challenging (due to sensitivity and 
selectivity issues)—application area is the detection of 
biomolecules. Monitoring of hydrogen peroxide (a 
biomarker for respiratory illnesses) has been shown by 
use of a paper-based sensor integrated into face masks.47 
A study in 2021 showed the possibility of detecting 
pathogens such as SARS-CoV-2 directly from breath by 
nucleic acid analysis via a face mask with a CRISPR-based 
biosensor.48 Another study for temporal monitoring of 
antibiotics in exhaled breath condensate49 showed that 
antibiotics behave similarly in breath and blood, 
supporting the idea that the analyte transportation from 
blood to the lungs bypasses the complex transport 
mechanisms involved in most non-invasive biofluids.

Saliva, urine, tears, stool, and ISF sensors
Saliva represents an attractive non-invasive alternative to 
blood as it is produced in large volumes.50 Saliva analysis 
is a challenging process because of the numerous sources 
of contamination, ranging from mouth microbes to food 
and drinks debris, as well as ion-trapping of drugs. These 
challenges, as well as the issue of increased sensor 
biofouling, have previously hindered the development of 
wearable salivary sensors. Urine—as a byproduct of 
kidney metabolism—is composed of metabolites, easy to 
sample, and is mostly analysed by lateral flow devices.51,52 
Uncomplicated urinary tract infections frequently 
lead to the prescription of antibiotics, and recur-
rent urinary tract infections are difficult to treat as they 
are commonly caused by multidrug-resistant bacteria. 
Monitoring antibiotics in urine to optimise treatment 
could therefore have a substantial effect.

Compared with other biofluids such as saliva and 
urine, which present highly variable dilution effects, 
lachrymal fluid is kept at a low and relatively stable 
volume, is continuously replenished, and contains a 
variety of detectable biomarkers.53 Tears are less prone to 
biofouling than saliva, ISF, and sweat; however, the 
difficulty of collecting tears remains a challenge. Contact 
lenses are commonly used as a platform for tear fluid 
analysis54 and show great potential for use in the 
prevention, diagnosis, and treatment of eye-related 
infections. Similarly, analysis of stool samples in 
laboratory settings is excellent for the assessment of 
gut microbiota, monitoring probiotic bacteria, and 
diagnosing inflammatory bowel disease.55 Therefore, 
stool analysis could be a potential application in patients 
with frequent bowel movements, such as those with 
diarrhoea who are treated with antibiotics.

Among alternative biofluids, ISF has the highest 
degree of correlation with blood; the composition of the 
two fluids is similar in terms of small molecules such 



4 www.thelancet.com/infection   Published online June 19, 2023   https://doi.org/10.1016/S1473-3099(23)00215-3

Personal View

as electrolytes, metabolites, and proteins. Successful 
examples of ISF-based biosensing include commer-
cialised, wearable devices for continuous glucose moni-
toring. Even though alternative, non-invasive approaches 
for ISF collection and analysis exist, such as reverse 
iontophoresis,56 and despite the great advantages of using 
ISF for biomarker monitoring, the effective development 
of wearable ISF sensors is limited by the sampling 
protocol, which involves minimally invasive microneedles 
being used to puncture the epidermis.57

A three-level model for TDM of antimicrobials at 
the SOI
Clinical application
We propose a novel three-level model for TDM of 
antimicrobials at the SOI (figure 2A). Our model offers a 
non-invasive, laboratory-independent approach to TDM 
using wearables (potentially at the SOI) and, more 
generally, could improve overall understanding of 
antimicrobial tissue penetration. Level 1 represents blood 
as a surrogate matrix upstream of the infected tissue; 
level 2 refers to the SOI and pharmacological target, 
where adequate antimicrobial exposure is needed; and 

level 3 represents non-invasively collectable biofluids 
stemming from the relevant infected tissue (eg, sweat 
in soft tissue infections and breath in pneumonia, 
figure 2B), which are considered to be surrogate matrices 
downstream of the site of SOI.

Four clinical implementation strategies can be 
envisaged for this TDM model. First, drug monitoring at 
the SOI is likely to be the most appropriate strategy for 
TDM. Second, measuring the difference between 
antimicrobial concentrations upstream of the SOI and 
downstream of the SOI could indicate an antimicrobial 
gradient, which could provide a deeper understanding of 
antimicrobial flow (ie, antimicrobial penetration from 
blood through the SOI into the biofluid stemming from 
the SOI). Third, TDM upstream of the SOI could serve as 
a calibration measure for TDM downstream of the SOI, 
either at the beginning of treatment or continuously 
during treatment. The antimicrobial concentrations in 
blood follow well investigated pharma co kinetic and 
pharmacodynamic models, and are more stable than 
concentrations in biofluids stemming from the SOI, 
which show high variability.58 Finally, calibration 
measures could be used to establish a continuous, 

(Figure 2 continues on next page)
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non-invasive, stand-alone evaluation of antimicrobials at 
the SOI; to assess concentration changes over time; or to 
potentially indicate adequate dosing for a personalised 
therapy.

However, the following considerations for these 
strategies exist and warrant further investigation. First, 

the SOI is usually inaccessible with non-invasive 
methods, meaning a direct TDM strategy cannot be 
pursued with the current sampling and sensing 
technologies in a simple, fast, and low-cost way. With our 
three-level model, the antimicrobial concentrations at the 
SOI could become estimable through derivation from 

Figure 2: The novel TDM model
(A) Applying three levels of TDM to the human body. Level 1: antibiotics are introduced to the bloodstream upstream of the SOI. Level 2: antibiotics reach the SOI in 
the infected tissues. Level 3: antibiotics are excreted into non-invasive biofluids downstream of the SOI. (B) Wearable biosensors for TDM downstream of the SOI 
detect antibiotic concentrations continuously (or semi-continuously) and non-invasively via a smart sweat patch for soft tissue infections, a smart face mask for 
pneumonia, a smart tooth-mounted biosensor for tonsillitis, a smart lens for conjunctivitis, and smart diapers for cystitis and colitis. The sensor data could be sent to 
a smart device (or secure server) and analysed by artificial intelligence algorithms. Figure created with BioRender.com. TDM=therapeutic drug monitoring. SOI=site 
of infection.
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antimicrobial flow. Second, determining antimicrobial 
concentrations at the SOI is of specific interest to 
optimise and guide antibiotic target attainment, 
especially when the specific minimum inhibitory 
concentration is established. The antimicrobial flow 
upstream of the SOI could be estimated through the 
distribution of blood to the respective organs (by 
percentage) in relation to cardiac output. However, 
measuring antimicrobial concentrations downstream of 
the SOI in dynamic biofluids represents a novel 
approach, which comes with challenges relating to 
sampling and interpretation. For example, assessing the 
body’s entire volume of sweat to discover the amount 
secreted from the skin during a given amount of time is 
highly challenging. The sweat rate can vary within and 
between individuals, and local sweat rates differ 
depending on the anatomical sampling site.59,60 Finally, 
calibrating sensors at the beginning of—or continuously 
during—a monitoring period by simultaneously 
measuring the antimicrobial concentrations upstream of 
the SOI is an opportunity to link a validated analysis with 
dynamic measures to foster reliable predictions.61 
However, the need for blood-based TDM analysis before 
the measurement makes this approach more complex 
than TDM downstream of the SOI and restricts its 
broad application, especially in low-income and middle-
income countries. A countermeasure for the costly, non-
continuous, and laborious blood analysis could be an 
additional wearable sensor module for ISF analysis, as 
ISF’s molecular composition correlates well with blood.62

Technological application
Wearables could provide a shift from blood-based TDM 
to multilevel TDM, including non-invasive analysis of 
antimicrobials at the SOI and integrative therapy 
management. During sepsis treatment, for example, a 
network of multiple wearable sensors could enhance 
therapeutic success by enabling the simultaneous and 
rapid monitoring of supplementary information, such as 
concentrations of cytokines, pH, C-reactive protein, or 
procalcitonin, together with TDM. Moreover, such a 
network of multiple wearable biosensors could be further 
modified to enable on-site pathogen detection 
(eg, targeting amplification-free nucleic acid testing by 
use of CRISPR–Cas technology48) in primary care. These 
wearable devices can cost a few to hundreds of US$ 
depending on their development and production costs, 
and they represent an affordable diagnostic tool.

Various matrices, such as sweat, breath, tear fluid, 
and urine, are being produced and collected in different 
physical forms, and sample compositions are affected 
by how collection is conducted.63 Therefore, defining 
and standardising the sampling approach is essential. 
Identifying the underlying secretion mechanisms of 
biofluids is also important for understanding the 
pharmacokinetics and pharmacodynamics of anti-
microbials in these biofluids.34 Antibiotic concentrations 

in breath have been shown to correlate well with blood 
in healthy pigs. However, in lung diseases such as 
pneumonia, the effect of pathophysiological changes, 
such as increased extravasation and a reduction of 
exchange area and time, needs to be explored.17,49 
Nevertheless, once sufficiently high time-resolution 
data are collected and the molecule secretion by each 
biofluid is better understood, direct correlation could 
be possible, but not necessarily needed. Artificial 
intelligence-based smart applications that can be 
implemented into wearables could aid under standing 
of these dynamic biofluids and support data 
standardisation.64 Wearable biosensing devices for 
non-invasive analysis harbour great potential for 
driving the P4 (predictive, preventive, personalised, and 
participatory) medicine concept, as they can directly 
engage patients with their own health management.65 
As wearables are integrable into secure streaming 
platforms for health data, they provide an interoperable 
public health surveillance tool at the individual and 
societal level, with great potential in remote and 
resource-restricted settings.66

Next steps
Needs
A structured assessment to define the needs of different 
stakeholders—especially patients—should be conducted. 
A variety of frameworks exist that define the multiple 
stakeholder groups involved in health research. These 
stakeholders include patients, the public, and consumers; 
providers such as clinicians and health-care institutions; 
payers such as organisations that pay for health-care 
goods and services; product makers, such as 
manufacturers; policy makers and regulators; training 
institutions; and researchers and research funders.67 The 
formulation of a stakeholder engagement plan will foster 
an expedient and successful development of wearables 
for monitoring patients’ health.

Execution
Biosensors have been shown to be capable of detecting 
low antibiotic concentrations in non-invasive and 
minimally invasive biofluids, but integrating these 
sensors with different sampling approaches on a 
common wearable platform needs further engineering.49,68 
This technological development must be followed by a 
regulatory framework to implement standards set by the 
International Organization for Standardization and to 
create the necessary conditions for scaling up device 
manufacturing in the long term. For downstream 
biofluid collection and analysis, various forms of sensors 
are needed to adapt to the different body sites, such as 
patch-based, on-skin sweat sensors; sensor-integrated 
face masks for exhaled breath analysis;69 mouth 
guard-based saliva analysis; tear analysis via contact 
lenses; diaper-based urine testing; and stool analysis 
(figure 2B). ISF is a good surrogate for blood for 
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establishing reliable correlations between measured 
drug concentrations. When coupled with closed-loop 
drug delivery systems for automated dose adjustment, 
ISF could hold the potential for future wearable TDM 
applications.

Additionally, the cross-connection of wearable sensors 
with smart devices and algorithms should be established 
to incorporate physiological and clinical information into 
analyses. Data inter operability and data integrity are of 
utmost importance. Special attention should also be 
given to data privacy, by implementing two-factor authen-
tication—an additional credential (such as a biometric 
measure) to the password—to access health data. This 
additional security measure empowers the patient to 
provide access to proprietary data that are stored within 
their respective health-care institution. Data security 
should be addressed further as internet connectivity 
exposes the patient to potential cyber harm, a new risk in 
digital health.70 Overall, technological achievements 
should be thoroughly implemented and investigated 
within a clear development plan that provides full clinical 
validation. Thus, investigating the value of this three-level 
model for non-invasive TDM at the SOI by considering 
clinical endpoints, such as overall survival, disease 
severity, safety, length of ICU stays, and quality of life 
after ICU discharge, will be essential. Although there are 
no conclusive data to date supporting the use of MIPD 
software in combination with TDM, further clinical trial 
data, including cost-effectiveness analyses, are required 
to robustly evaluate the use of MIPD for TDM as 
meaningful clinical interventions.71 Future work will 
need to ensure that MIPD software with TDM is applied 
early in clinical therapy using prompt adaptive feedback 
mechanisms. Importantly, patient groups at high risk 
who are likely to benefit most from dose optimisation, 
such as patients who are critically ill with a high severity 
of disease, patients with a pulmonary source of infection, 
and patients who are likely to be infected with bacterial 
organisms with reduced anti microbial susceptibility, 
should be targeted in clinical interventional studies.72–74

Further applications
In addition to providing a novel key element for the 
quantitative assessment of antimicrobials in TDM, the 
qualitative detection of antimicrobials in non-invasive 
biofluids provides further advances for patient care. 
Non-compliance has been shown to affect up to 20% of 
paediatric patients and can lead to treatment failure.75 
Screening for the presence of antimicrobial agents at the 
bedside within minutes and at low cost would provide 
important information about treatment compliance. 
Poor compliance is a well known reason for treatment 
failure in patients with tuberculosis. Directly observed 
therapy has therefore become standard practice for the 
treatment of multidrug-resistant tuberculosis; however, 
this successful strategy is costly and labour intensive. 
Similarly, if broadly detectable β-lactam antibiotics 

cannot be targeted in samples downstream from the 
SOI, non-compliance could explain treatment failure 
rather than ineffective antibiotic treatment.

Our three-level concept of TDM is potentially applicable 
in other fields. For example, monitoring oncological 
drugs at the site of cancers or immuno suppressants at 
the site of suppression could provide highly promising 
approaches for improving treatment efficiency and the 
outcomes of patients with cancer or patients who have 
had transplantation surgery. Moreover, our model could 
also be implemented into the drug development process 
by providing continuous infor mation about pharmaco-
kinetics.

Conclusion
We have proposed a three-level model for TDM of 
antimicrobials, which links antimicrobial concentrations 
from the analysis of blood with non-invasive biofluids 
stemming from the SOI. This model will provide a 
thorough understanding of antimicrobial flow and 
concentrations at the SOI. For this purpose, wearables 
offer a promising solution for continuous and point-of-
care biofluid analysis to access molecular biomarkers. 
Combining our three-level model with wearable sensors 
will help to overcome the limitations of traditionally 
invasive and laboratory-dependent analysis. Furthermore, 
our model would foster continuous and non-invasive 
TDM by implementing the non-invasive collection of 
biofluid from the respective infected site. The next steps 
in the development of wearable platforms are assessing 
the stakeholder needs, executing full technological 
develop ment, conducting clinical investigations to 
support the clinical value of our model, and obtaining 
permission from patients to monitor their treatment.
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