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Artificial intelligence-powered  
electronic skin

Changhao Xu    , Samuel A. Solomon & Wei Gao     

Skin-interfaced electronics is gradually changing medical practices by 
enabling continuous and non-invasive tracking of physiological and 
biochemical information. With the rise of big data and digital medicine, 
next-generation electronic skin (e-skin) will be able to use artificial 
intelligence (AI) to optimize its design as well as uncover user-personalized 
health profiles. Recent multimodal e-skin platforms have already used 
machine learning algorithms for autonomous data analytics. Unfortunately, 
there is a lack of appropriate AI protocols and guidelines for e-skin devices, 
resulting in overly complex models and non-reproducible conclusions 
for simple applications. This Review aims to present AI technologies in 
e-skin hardware and assess their potential for new inspired integrated 
platform solutions. We outline recent breakthroughs in AI strategies 
and their applications in engineering e-skins as well as understanding 
health information collected by e-skins, highlighting the transformative 
deployment of AI in robotics, prosthetics, virtual reality and personalized 
healthcare. We also discuss the challenges and prospects of AI-powered 
e-skins as well as predictions for the future trajectory of smart e-skins.

E-skin refers to integrated electronics that mimic and surpass the 
functionalities of human skin. Due to their flexible and conformable 
nature, e-skins may be placed on various robotic and human bodily 
locations for continuous biosignal monitoring, rivalling bulky medical 
equipment in the fields of robotics and prosthetics1,2. Engineered for 
self-contained operational frameworks, e-skins act as human–machine 
interfaces (HMIs) for smart bandages3, wristbands4, tattoo-like stickers1, 
textiles5, rings6, face masks7, and customized smart socks and shoes8 
for various applications. Compared with conventional rigid devices, 
soft e-skin patches seamlessly interface with the skin, achieving a con-
formal and stable contact that minimizes motion-induced artefacts 
and wearing discomfort9. The convenience and flexibility of applying 
these electronic patches to any target location, while continuously 
and non-invasively measuring multiplexed signals via mobile con-
nectivity, has surpassed conventional point of care to become an ideal 
form of wearable systems. With the increasing demands for remote 
and at-home care, e-skins have been applied for personal fitness4,10, 
virtual reality11,12, telemedicine and early disease detection13,14, as well 
as coronavirus disease 2019 (COVID-19) tracing and monitoring15,16.

While emerging e-skin is revolutionizing robotics and medical 
practices by continuously monitoring multimodal data17, data analysis 
is playing an increasingly important role in interpreting the large, com-
plex biological profiles generated from various sensors. Conventional 
analysis of e-skin data largely relies on human supervision, where signal 
processing and data evaluation is time consuming and interpreted from 
a restricted point of view1,4,5. There is an unmet demand between e-skin 
hardware and efficient data analysis solutions. Recent developments 
in deep learning have permitted the evaluation and even generation 
of big data for health applications18. AI can reveal medical insights 
that are challenging to acquire with traditional data analytics while 
providing accurate predictions that can mimic or even surpass human 
expertise19–21. AI, together with the rapidly growing interest in health 
monitoring and remote robotics, has become the main catalyst pushing 
forwards advanced e-skin innovations.

This Review details the recent developments of e-skin technolo-
gies with a particular focus on AI (Fig. 1 and Table 1). We first present the 
general machine learning (ML) pipeline for e-skin applications, along 
with a summary of emerging sensors. We then discuss how machine 
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Strain and pressure sensing
A strain sensor is a commonly integrated sensor that tracks the resist-
ance of electronic materials under deformations. Strain sensors enable 
the detection of large distortions from bodily motions24 and small devia-
tions for tactile perception25. As another motion-sensing mechanism, 
a pressure sensor utilizes piezoresistive materials or capacitors with 
a pressure cavity. Similar to strain sensors, pressure sensors can be 
customized to perform pressure mapping26,27, user interactive visu-
alization28,29 and tactile sensing30,31.

To fully mimic skin sensations, strain and pressure sensors are 
often combined for haptic interfaces in HMI applications11. When 
placed near arteries, strain and pressure sensors can detect vital signs 
such as blood pressure and heart-rate variability32. Recent studies 
have also utilized piezoelectric sensor arrays, which capture acoustic 
vibrations from tissue for blood pressure monitoring and imaging 
applications33–35.

Temperature monitoring
While elevated core body temperatures often result from infections and 
overheating, a decreased temperature can lead to faltered physiological 
systems and even organ failure. Although e-skin sensors are commonly 
applied to monitor skin surface temperature, arrays of sensors could be 
used in conjunction to minimize local deviations and display an accurate 
temperature profile36. Further studies have investigated correlating skin 
surface temperatures with core body profiles37. In addition, temperature 
data are important for calibrating biochemical sensors, as chemical 
reactions are sensitive to their operating temperature38.

Electrophysiology
Electrophysiology refers to measuring the electrical activities of tissues 
and organs. Common skin-interfaced biopotential modalities involve 

intelligence could revolutionize the field of e-skin by optimizing 
manual designs and facilitating high-accuracy task assistance and 
decision-making. We then highlight use cases for AI-powered e-skins 
in HMIs and personalized healthcare. Finally, we will discuss the chal-
lenges and prospects for e-skins in the era of AI and big data.

Emerging sensor landscape in e-skins for data 
acquisition
In a typical ML pipeline (Fig. 1), raw data collected from e-skins will 
first be preprocessed for feature extraction. Popular preprocessing 
techniques include filtering, smoothing, downsampling with a sliding 
window, dimensionality reduction, and baseline removal and normali-
zation22. An ML algorithm is then selected for the specific objective 
(Table 1), which can be supervised or unsupervised, classification or 
regression, discriminative or generative22. During model selection, 
one needs to account for data availability20. While simple models may 
struggle to represent the expected trends, complex models on simple 
datasets may lead to non-reproducible conclusions, particularly in 
health applications when a small dataset may be specific to a particular 
demographic.

Training of an intelligent ML system requires a substantial amount 
of high-quality data. Unlike conventional clinical laboratory tests that 
are performed discretely and infrequently, emerging wearable sensors 
provide the ability for continuous acquisition of digitalized data with 
multiplexed sensors, allowing for more personalized care by analysing 
deviations in individual baselines23. This approach greatly mitigates the 
biases from environmental factors such as diet, age, stress and drug use, 
yielding a more appropriate and accurate medical diagnostic tool based on 
the individual rather than population-level statistics. Here, we focus on the 
two primary sensing domains in e-skin platforms (Fig. 2), namely, physical 
and biochemical sensors, highlighting their key usage and applications.
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Fig. 1 | Overview of AI-powered e-skin and ML pipelines. E-skin provides access 
to human information or serves as an interface to robotics by continuous and 
non-invasive monitoring of multimodal physical and biochemical sensors. The 
data stream is constructed and transformed into a standard numerical format 

through data preprocessing and feature extraction. On the basis of the intrinsic 
data properties, different ML algorithms can be selected and trained, allowing for 
real-world applications. GPT, generative pre-trained transformer.
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Table 1 | Representative studies that used ML-powered electronic skin for tasks

Category E-skin platform Targeted parameters ML models Learning objectives Reference Year

ML for e-skin 
design

Soft membrane Shape NN Three-dimensional shapes 88 2022

Graphene on polyimide Electrical conductivity DT Jet printing design 84 2022

Graphene kirigami Stretchability NN Kirigami design 87 2018

ML for sensor 
enhancement

E-nose VOC gas RF Multi-gas classification 66 2022

Stretchable synaptic 
patch

Neuromorphic computing NN Handwritten digits (MNIST) 99 2022

Field-effect transistors Hg2+ sensors Linear regression Hg2+ sensor calibration 96 2021

Colorimetric strips Amine gas CNN Food freshness 70 2020

ML for HMI

Substrate-less nanomesh Strain at finger joint Transformer Hand tasks 103 2023

Graphene artificial throat Strain from throat CNN Basic speech elements 121 2023

Stretchable patch Strain from throat NN Throat activities 119 2023

Stretchable patch Force reception using fibre 
Bragg grating transducers

CNN Tactile force mapping 158 2022

Smart finger Triboelectric output on 
different surfaces

LDA Materials 109 2022

Stretchable magnetic 
patch

Force reception using Hall 
effect in magnetic film

NN Tactile sensing with force 
self-decoupling

159 2021

Flexible patch EMG mapping on forearm Hyperdimensional computing Hand gestures 102 2021

Textiles Strain on different parts of 
body

CNN Whole-body poses 106 2021

Ultrathin flexible patch Phonetic spectrum from 
piezoelectric acoustics

Gaussian mixture model Biometric authentication 120 2021

Stretchable patch Strain at finger joint, hand 
gesture images

NN for sensor, CNN for image Hand gestures 107 2020

Stretchable patch Strain at finger joints SVM Sign-to-speech translation 112 2020

Flexible patch Thermal conductivity, 
contact pressure and 
temperature

NN Objects 104 2020

Stretchable patch Strain mapping on face kNN Facial kinematics 111 2020

Textile glove Full-hand strain distribution CNN Tactile signatures of hand 
grasp

105 2019

Stretchable patch EEG CNN EEG frequency 43 2019

ML for 
healthcare

Stretchable cardiac 
imager

Ultrasound image of heart CNN Left ventricular volume 34 2023

Stretchable patch Vocal intensity and energy 
dose

CNN Vocal fatigue 117 2023

Microfluidic skin patch Heart rate, alcohol Linear regression Behaviour impairment 57 2023

Graphene tattoos Pulse on wrist AdaBoost Systolic and diastolic 
pressure

133 2022

Radio sensor Night nocturnal breathing 
signals

NN Parkinson’s disease 14 2022

Commercial EEG helmet EEG CNN Drowsiness 139 2021

Textiles Pulse on wrist NN Systolic and diastolic 
pressure

132 2021

Smart bandage Vital signs from throat CNN Cough-like events for 
COVID-19

147 2021

Epidermal electronic 
tattoos

ECG, respiration and GSR DT Fatigue 137 2020

Textiles Strain on leg RF Running fatigue 138 2020

Commercial leads ECG CNN Stress 136 2018

Commercial wrist watch Vital signs on wrist SVM Stress 135 2017

Commercial wrist watch 
and straps

Vital signs on wrist Logistic regression Stress 134 2012

CNN, convolutional neural networks; DT, decision tree; GSR, galvanic skin response; kNN, k-nearest neighbours; LDA, linear discriminant analysis; MNIST, Modified National Institute of 
Standards and Technology database; NN, neural networks; RF, random forest; SVM, support vector machine.
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electrocardiography (ECG)39, electromyography (EMG)40,41 and electro-
encephalography (EEG)42,43. These signals are measured by placing arrays 
of electrodes on the skin at different locations. E-skin-based electrophysi-
ology sensors commonly show high performance due to the conformal 
contact between the soft e-skin and body with a low contact impedance.

Biochemical sensing
E-skin-based biochemical sensors have been widely applied to ana-
lyse molecular biomarkers (for example, electrolytes44, metabolites4, 
amino acids10, neurotransmitters45 and proteins46) in human bioflu-
ids including sweat4,10,13,47, saliva48 and interstitial fluids49. Common 
biosensing signal transduction strategies include electrochemical 
and optical detection mechanisms50. These sensors can be applied 
for a wide range of biomedical applications including fitness tracking, 
metabolic monitoring4, cystic fibrosis diagnosis44, gout management13 
and stress assessment51.

Substance monitoring
In addition to natural biofluid components, e-skins can also detect 
substances that are extrinsic to the normal metabolism such as drugs52 
(for example, vancomycin53 and levodopa54,55), alcohol56,57, caffeine58 
and heavy metals59. By focusing on personalized pharmacokinetics 
instead of population studies, continuous therapeutic drug monitor-
ing can improve treatment outcomes and reduce side effects through 
dosage adjustments, which are especially important for drugs with 
narrow therapeutic windows52. Moreover, e-skin sensors can serve as 
a rapid screening tool for drug abuse60,61.

Gas sensors
Human breath contains rich molecular information and could provide 
a non-invasive health profile like biofluids. Many volatile organic com-
pounds (VOCs) in the breath are diagnostic biomarkers for infectious, 
metabolic and genetic diseases62,63. For example, breath carbon monoxide 
is linked to neonatal jaundice and breath ammonia and nitric oxide are 
connected to asthma64. Integrated sensor arrays known as electronic 

noses have been developed to detect humidity, VOCs and other gas com-
ponents in exhaled breath and the surrounding environment65. Combined 
with ML, these sensors can distinguish complex chemical signatures66,67, 
and have been employed for breath-based individual authentication68, 
soil nitrogen assessment69 and evaluating food freshness70.

Environmental monitoring
Environmental risk factors, including chemical threats and patho-
genic biohazards, pose a risk to both the human body and safe robotic 
operations. AI-powered e-skins have expanded their scope to encom-
pass monitoring not only the human body but also the surrounding 
environment. During remote operations, e-skin systems can detect 
trace amounts of dangerous compounds and provide environmental 
feedback without human exposure2. A combination of biochemical sen-
sors was integrated into an e-skin patch attached to a robotic arm that 
could detect hazardous materials including nitroaromatic explosives, 
pesticides, nerve agents and infectious pathogens with autonomous 
ML-based decision-making algorithms2.

AI-generated e-skin
Human skin has outstanding mechanical properties, including flex-
ibility, stretchability, toughness and multifunctional sensing abilities. 
However, there are many unsolved material challenges to replicating key 
properties in artificial skin71. AI has been proposed to optimize materi-
als discovery and sensor designs to autonomously redesign new e-skin 
patches71,72. AI can be integrated into the materials design process in 
three phases (Fig. 3). The first phase involves model prediction and patch 
design based on functional requirements: size, weight, lifetime, cost and 
other material specifications. The second phase entails computational 
modelling and experimental validation. The last phase is the improve-
ment of current databases and model accuracies based on the results.

Emerging materials and e-skin designs
The conventional selection of substrate materials typically involves 
natural materials such as cotton and silk, which are known for their 
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Fig. 2 | Emerging sensors in e-skin for health monitoring and robotics. The combination of physical and biochemical sensors provides access to force sensing and 
mapping, electrophysiology, and biochemical substances in body fluids and surroundings.
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biocompatibility, low cost and comfort. However, natural materials 
have inherent limitations in stretchability and tunability. Material sci-
entists and chemists consequently synthesize soft materials based on 
a combination of manual designs, drawing inspiration from nature and 
leveraging previous material examples as references73–75. Some material 
design strategies include ultrathin tattoo-like substrates1, applying 
serpentine interconnects76 and using nature-inspired skin adhesion to 
realize high fiducial signal collection77. However, these materials and 
designs require extra validation to characterize their properties, and 
many synthetic processes involve toxic precursors and require careful 
biocompatibility tests.

With a diverse availability of material candidates, designing or 
selecting a material with desired properties for a specified task is 
becoming increasingly challenging78. ML provides an attractive path-
way to explore new materials and identify promising candidates with 
targeted properties, including alloy materials79, nanoparticle synthe-
sis80 and electronic materials81. So far, a number of publicly available 
databases have been launched for simulating functional materials 
and recipes71. Moreover, ML can also be used to optimize and explore 
material synthesis, such as extracting text from scientific literature 
and giving synthesis protocol suggestions82,83.

AI can help select and optimize fabrication methods based on 
material characteristics. In addition, ML can assist in quality con-
trol during mass fabrication, such as with jet printing of electronic 

circuits84. In addition to materials and fabrication methods, ML is 
also capable of optimizing e-skin designs. For example, an ML-based 
circuit designer has enabled transistor sizing adjustments using graph 
convolutional neural networks85. While conventional e-skin designs 
from planar designs typically do not conform to curvy surfaces86, ML 
can guide structural designs of e-skins by finding kirigami designs for 
three-dimensional shape-adaptive e-skins and pixelated planar elas-
tomeric membranes more efficiently than mechanical simulations87,88.

As most data from material experiments are discrete and noisy 
with high variance, it is necessary to preprocess the data through 
interpolating missing data and rebalancing biased training sets89,90. In 
addition, many material science fields are not data rich, and anthropo-
genic biases in the limited dataset may hinder model generalization90. 
This can be particularly true for collecting data about novel materials 
for human participants. It is anticipated that a more standardized 
materials dataset and pipeline will speed up materials development 
and discovery72.

Signal processing and augmented sensor performance
While traditional intuition-driven sensors are based on situation-specific 
experimental trials and time-consuming numerical simulations, ML 
algorithms can search for optimal sensor architectures as a function 
of required material properties with an accelerated and efficient 
prediction time66,91. In addition to conventional task-specific and 

ML-optimized e-skin materials
• Identify new materials with target properties
• Optimize existing materials
• Identify potential materials for given task

ML-optimized e-skin 
fabrication 
• Autonomous process 

with mass fabrication
• Optimize and simplify 

existing procedures
• Improve e�iciency in 

additive manufacturing

Prediction and design
Materials generation
Molecular simulation
Reaction prediction

Database management
Knowledge graphs
Data fusion
Model training

Experiment validation
Choice of candidates
Materials synthesis
Sensor testing

ML-optimized e-skin 
sensors
• Enhance limit of 

detection
• Selectivity signal 

extraction
• Multimodal sensor 

analysis

Fig. 3 | ML optimizations for e-skin designs. AI algorithms serve as an alternative pathway to optimize and explore materials synthesis, facilitate automatic mass 
fabrication and optimize current sensor limits.
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labour-intensive signal processing, ML is capable of fast, robust data 
analysis to provide transferable frameworks under different initial con-
ditions. For example, ML can perform signal denoising92, multi-source 
separation93, and artefact identification and elimination94. Two crucial 
guidelines for e-skin sensors are sensitivity and selectivity to the tar-
get biomarker. Indistinctive signal-to-noise ratios and overlapping 
detection between targets and interferents are two main bottlenecks 
for applying sensors for trace-level molecular detections in complex 
biomatrices. Substrates with similar structures to the target in biofluids 
could lead to confounding results. ML has been illustrated to improve 
the specificity and sensing limit of detection in multimodal sensing95. 
Many biochemical sensors involve enzymes that have a narrow working 
range, while AI algorithms could surpass signal saturation and calibrate 
nonlinear sensors in a dynamic testing environment96.

Motion artefacts are another major source for background noise 
in e-skins. While extensive analogue and digital signal processing 
techniques have been applied to reduce artefacts and improve data 
quality39,97, they typically involve manual circuit designs and simula-
tions, which entail high costs and are not easily expandable to different 
scenarios. ML can be used for precise data acquisition by compensating 
noise and defects in wearable sensors98. In addition, data acquisition 
hardware can be fundamentally redesigned for optimal sensing with 
an intelligent platform67,99. The improved sensing capabilities as well 
as compact systems will fundamentally enhance sensor performance 
through iterative analysis of data-driven sensing outcomes91.

AI-powered e-skin for HMIs
HMIs enable the interaction between users and robotics, and have 
become crucial in remote robotic teleoperations. As the demand for 
precise and intuitive robotic control continues to grow, research has 
been turning its attention from conventional control theory towards 
a more immersive and interactive interfacing platform. The emerging 
AI-powered e-skins are creating new paradigms for robotic control and 
human commanded perception100,101 (Fig. 4). AI could quickly analyse 
multimodal data from e-skin patches and make autonomous deci-
sions to manipulate robotics and provide human aid, which has already 
bridged the gap between human and machine interactions.

Tactile perception
Tactile perception decodes and transmits physical information to 
a computer system about hand movements, gestures and force rec-
ognition102. The associated robotics can then accomplish tasks such 
as object grasping103, shape detection2 and object identification104. 
Haptic sensors are therefore widely adopted as a fundamental element 
for e-skin-based HMI systems, which are usually built with arrays of 
strain and pressure sensors or electrophysiology electrodes such as 
surface EMG electrodes to capture complex hand movements41,102,105,106, 
producing a large quantity of continuous data. Real-time haptic per-
ception with the aid of AI has made tremendous progress in dynamic 
whole-body movements106, gesture interpretation107, tactile recogni-
tion105,108, and object manipulation and detection109.

Prosthetics and robotic feedback
Developing prostheses that rehabilitate motion for people with dis-
abilities is a crucial goal in machine intelligence. Prosthetics typically 
involve a large sensing area with robotic feedback, where the e-skin 
extracts motion or audio data and ML algorithms analyse and con-
trol robotic operations accordingly. Strain and pressure sensors are 
fundamental components for actuators and grippers in robotics, 
enabling tactile feedback for enhanced functionality105,110. A variety 
of prosthetic solutions have been developed for different scenarios, 
including facial expressions111, robotic control and feedback2, transla-
tion of sign language into speech112, personalized exoskeleton walking 
assistance113, and steering and navigation assistance for people with 
impaired vision114.

Smart robotic hands for prosthetics can also be applied for task 
assistance in healthy people. For example, a nanomesh-based e-skin 
integrated with meta-learning could assist rapid keyboard typing 
with a few-shot dataset103. Smart e-skin also has the potential for driv-
ing assistance by monitoring the driver’s state and preventing sleep 
deprivation-related accidents115, which provides an alternative solution 
for vehicle automation.

Hearing aid and natural language processing
Verbal communication with machines is another promising e-skin 
application that relies on AI, where a voice–user interface leveraging 
natural language processing is highly intuitive and convenient. Numer-
ous studies have developed resonant acoustic sensors in e-skin for 
voice recognition116, vocal fatigue quantification117 and voice control of 
intelligent vehicles118. These sensors integrate resistive or piezoelectric 
membranes as sensing components116,119,120, which converts the human 
hearing range of around 20 Hz to 20 kHz. The customized frequency fil-
tering can identify physical activities with different intrinsic frequency 
bands119, or filter acoustic vibrations against human perspirations and 
background noise121. Voice sensors may also serve as a security device 
for biometric authentication120.

Virtual and augmented reality
Virtual reality and augmented reality create a virtual environment 
where visual and auditory stimuli replicate sensations in the physi-
cal world11. E-skin provides an additional sensation of touch due to 
its unique skin interface122. For example, wireless actuators could be 
integrated in e-skins for programmed localized mechanical vibrations11. 
Such mechanical feedback can also form a closed-loop HMI system for 
motion capturing and vivid haptic feedback when interacting with 
virtual objects123,124. To further implement gesture controls for vir-
tual reality, a textile glove has been developed with ML algorithms 
to classify hand patterns in various virtual reality games125. AI could 
accelerate machine vision processing by utilizing a simple image sen-
sor array matrix126, empowering a high frame rate in virtual reality 
visualizations. In addition, some pioneering demonstrations have 
illustrated the potential of odour generators for olfactory virtual reality  
applications127.

AI-powered e-skin for healthcare and diagnostics
E-skin with arrays of integrated sensors can record the health profile 
of an individual in remote and community settings, detect aberrant 
physiology over time and unveil health distributions at the population 
level. ML has aided diagnostics by identifying complex relationships 
between input physiological information and disease states18,23,128. 
There is a growing trend of using AI-powered e-skins to address the 
growing demands in health monitoring and diagnosis (Fig. 5). Emerg-
ing AI has shown promising capabilities in approaching expert-level 
diagnosis, which could reduce the rate of misdiagnosis and create great 
clinical and market potential. For complex disease syndromes without 
established biomarkers, these ML algorithms could also facilitate our 
understanding in biomarker discovery, psychological predictions and 
precision therapy.

Cardiovascular monitoring
Heart failure can worsen progressively over days but current telemedi-
cine tools are not sufficient to detect acute exacerbations. AI-powered 
e-skins hold the promise of specialist-level diagnosis for cardiac con-
tractile dysfunction or arrhythmias129,130. E-skins can integrate multi-
ple modalities and facilitate the rapid evaluation of haemodynamic 
consequences of heart failure131. ML has been widely adapted for data 
analysis to extract cardiac parameters, such as blood pressure predic-
tions132,133 and left ventricular volume34. AI-based e-skin is anticipated 
to spot small and gradual cardiovascular changes over time and facili-
tate automatic diagnosis in a timely manner131. Such an approach will 
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also alleviate the clinical load of physicians by reducing unnecessary 
hospital consultations.

Stress and mental health
Stress and mental health are crucial problems for global health but 
their assessments rely heavily on subjective questionnaires. Pioneering 
studies for mental health predictions have been introduced, including 
stress134–136 and fatigue137–139, but most studies still focus on commercial 
wearables such as watches, which monitor only physical vital signs and 
are prone to motion artefacts. Several pioneering studies have demon-
strated dynamic monitoring of the stress hormone cortisol using e-skin 
devices51,140. Next-generation e-skins will combine physiological data 
with molecular signatures and perform multimodal data analysis141. 
By identifying previously unrecognized associations between health 
patterns and stress risk factors142, smart multimodal e-skins with the 
aid of AI have the potential to model risk associations and unveil stress 
outcomes for mental health.

Biomarker discovery
The development of AI is driving advances in both medical diagnosis 
and fundamental studies. Given the quantity of data in clinical studies, 

ML could be a transformative technology for data-driven biomarker 
discovery143. ML-based algorithms perform automatic data analysis for 
biomarker prediction, including skin disease144, dysphagia145, seizure146 
and COVID-19 (ref. 147), where multiparametric monitoring based on 
multimodal e-skin platforms can reveal correlations between sensors 
and target outputs148. For diseases such as Parkinson’s disease where no 
known effective biomarker is available, ML has the potential to unveil 
underlying correlations from the multi-dimensional data14.

Personalized therapy
The development of drug and metabolic monitoring using e-skins has 
also aided in personalized therapy. AI-powered e-skins could benefit 
drug-dosage personalization, where multimodal data coupled with ML 
models can be applied to evaluate pharmacokinetics and pharmacody-
namics for personalized dosage149,150. In addition, dynamic treatment 
of a disease affected by the individual’s history and current course of 
action is well suited for the sequential decision-making used in rein-
forcement learning151. Prospective cohort studies involving physiologi-
cal, metabolomic, environmental and genomic data are anticipated to 
pave the way for the advancement of personalized therapy through the 
integration of AI-powered electronic skin.
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Fig. 4 | AI-powered e-skin for HMIs. ML bridges the gap between humans and machines through task assistance, robotic control and virtual reality.
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Challenges and outlook
With the continued development and innovations in AI-powered e-skin, 
next-generation e-skin is expected to aid prosthetics and the discovery 
of diseases, yet there remains several major bottlenecks including 
data acquisition and handling, data security and data generalization.

Data handling in both quantity and quality has become a challenge 
for model deployment. AI-driven data analytics are typically data 
hungry, and training models with high prediction accuracy depends 
on large amounts of high-quality labelled data. Mature models such 
as decision trees and support vector machines demonstrate great 
accuracy and reproducibility and find extensive applications, yet 
their reliance on structured and manually labelled data poses high 
acquisition costs. In contrast, unsupervised learning unveils hidden 
patterns in unlabelled data, albeit with reduced accuracy and con-
strained applicability. Recent advanced models such as transformers 
have shown success in language processing and generation, but these 
models are of high complexity and require pre-training over big data 
sources using resource-intensive computing, with the underlying 
mechanisms still insufficiently understood. The time-continuous 
data stream from e-skin sensors carrying large amounts of unlabelled 

and heterogeneous data poses high demand for data processing and 
system integration. This necessitates a fast and cost-effective system 
for collecting and transmitting data to cloud-computing-based e-skins, 
while high-performance computing and storage units with low latency 
are required for in situ applications23. Despite the growth in AI-driven 
e-skins, comprehensive regulatory frameworks addressing data acces-
sibility, ownership and security are yet to be fully established. This is 
crucial as public perception of data privacy risks can directly influence 
the adoptability of wearable devices, while user acceptance to disclose 
their medical information is uncertain at present152. While the latest ML 
algorithms such as GPT-4 models have been reshaping the world, the 
success of large language models stems from the enormous amount of 
publicly available Internet data, which may not apply to the privately 
restricted medical datasets. Accessing regulated medical records and 
data poses notable challenges as they are highly restricted and obtain-
ing them entails stringent protocols and privacy considerations153, and 
data differences may potentially result in divergence from training 
accuracy. The U.S. Food and Drug Administration has recently updated 
its guidelines for handling sensitive medical data after announcing 
a new Office of Digital Transformation in 2021. Data generalization 
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Fig. 5 | AI-powered e-skins for personalized healthcare and predictive disease 
diagnostics. a, Cardiovascular health can be investigated through continuous 
monitoring of one’s cardiac activities (ECG, pulse waveforms and so on) with 
e-skins. Integrating autonomous analysis through AI algorithms creates further 
potential for screening urgent conditions such as arrythmias. b, The application 
of AI-powered e-skin can extend to mental health, which is a complex event 
that involves behavioural and physiological responses, metabolic changes and 

fluctuations in a number of stress hormones. GSR, galvanic skin response; PTSD, 
post-traumatic stress disorder. c, Biomarker discovery through AI algorithms will 
further aid in finding new missing information potential links between measured 
sensor data and health status of individuals. d, Personalized therapy can be 
achieved by measuring an individual’s genetic and metabolic status using e-skins 
to develop highly targeted medicine for medical treatment.
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originating from built-in bias is another issue that could harm mar-
ginalized groups of people, which warrants special consideration for 
adopting ML models in medical practice. AI models can often make 
mistakes, but it is unknown who or what will be held responsible for 
controversial behaviours and outcomes of AI systems. Although mod-
els will become more powerful and capable over time, to what extent 
people can trust the ML predictions is still unknown153. The ability of 
fact checking versus proofreading may be beyond the expertise of users 
without clinical expertise20. Studies on interpretation and explanation 
of AI may be a possible solution154.

From an e-skin perspective, another challenge is collecting 
high-quality biochemical data. Dealing with enormous amounts 
of rapidly fluctuating unlabelled data during continuous health 
monitoring may have adverse effects on model learning. Minimiz-
ing motion-induced artefacts from both human and robotic bodies 
requires a strong interface and wearing comfort, and therefore poses 
a need for strict materials properties, including biocompatibility, 
permeability, durability, mechanical strength and conformability9,22. 
Biocompatible and non-toxic materials with strong, breathable and 
reversible skin adhesion are highly desirable for prolonged daily wear-
ing, where the durability lifetime may depend on the specific use case50. 
Data accuracy can be improved by implementing multimodal sensing 
using one integrated platform to reduce defects from a single sen-
sor47. Moreover, despite their high correlation with multiple potential 
diseases155, many biochemical sensors struggle with low sensor stabil-
ity, the necessity for frequent calibrations and difficulty in detecting 
low-concentration biomarkers, which cannot provide as high-quality 
data as electrophysiological ones. In addition, sensor embodiment 
and system integration is of concern when considering power sources, 
sensor arrays, signal processing and wireless data transmission22. Most 
integrated e-skins are powered through bulky rechargeable lithium-ion 
batteries; however, more research into wireless and low-power energy 
harvesting and storage is needed to develop fully flexible and sustain-
able e-skins38,156. These challenges have opened the door to exciting 
new opportunities in improving electronic sensors, optimizing patch 
designs, integrating cloud storage, protecting data privacy157 and 
interpreting model accuracy154. The interdisciplinary collaborations 
among materials scientists, chemists, engineers, physicians and data 
scientists are crucial to realize the full potential of the e-skin. The 
emergence of AI-powered e-skin marks a new era in the field of robotics 
and healthcare and is envisioned to transform the way humans interact 
with robotics and revolutionize medical diagnostics.
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